导航与遥感研究中心
学院首页
学校首页
山东大学
研究院首页
 首页  研究队伍  北斗分析中心  教学与课程  实验室介绍  新闻中心  关于我们  更多 
 
关于我们
 
 
当前位置: 首页>>关于我们>>学术进展>>正文
 
蒋春华在Remote Sensing发表Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations文章
2020-02-18 15:02:44     (点击次数:)

作者:Jiang Chunhua, Tianhe Xu *, Shuaimin Wang, Wenfeng Nie and Zhangzhen Sun

来源出版物:Remote Sensing卷:12期:4文献号:DOI:https://doi.org/10.3390/rs12040663出版年:Feb 2020

摘要:The latest reanalysis of the European Center for Medium-Range Weather Forecasts (ECMWF), ERA5, can provide atmospheric data for calculating Zenith Tropospheric Delay (ZTD) with hourly temporal resolution, which is a key factor in Global Navigation Satellite System (GNSS) high-precision application. This paper is aimed at evaluating the performance of ZTD derived from ERA5 reanalysis data over China using 219 GNSS stations of the Crustal Movement Observation Network of China (CMONOC) covering the period from 2015 to 2016. The site-specific hourly ZTD at these stations is obtained by integration method and Saastamoinen model method on ERA5 pressure-level and surface-level reanalysis data with the temporal resolution of 1hour and the spatial resolution of 0.25°×0.25°. Firstly, the atmospheric temperature and pressure that derived from ERA5 are compared with temperature and pressure obtained from meteorological sensors available at 193 GNSS stations. The biases are 2.31 °C and 1.26 mbar implying the accuracy and feasibility of ERA5 pressure and temperature for calculating ZTD over China. Secondly, the performance of ERA5 ZTD is systematically evaluated using ZTD from 219 GNSS sites. The average bias and Root Mean Square (RMS) of ERA5 pressure-level ZTD at all test stations in integration method are approximately 2.97 mm and 11.49 mm respectively, and those of ERA5 surface-level ZTD in model method are 7.97 mm, 39.25 mm, which indicates that ERA5 pressure-level ZTD has a higher accuracy over China. Further analysis indicates that the accuracies of ZTD derived from ERA5 pressure-level and surface-level data are approximately 13.8% and 10.9% higher than those from of ERA-Interim pressure-level and surface-level data. Moreover, ERA5 is able to accurately capture the short-term (hourly) variation of ZTD, which further indicates the better performance of ERA5. Thirdly, the temporal and spatial variation characteristics of ERA5 ZTD accuracy are further analyzed over China. The results show that the ZTD in the southern region has the lower accuracy compared with that in the northern region over China due to the influence of latitude and altitude. Furthermore, it is found that the ERA5 ZTD over China has obvious seasonality, with higher accuracy in winter and lower accuracy in summer.

Keywords:zenith tropospheric delay; GNSS; ERA5

Citations:Jiang, C.; Xu, T.; Wang, S.; Nie, W.; Sun, Z. Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations.Remote Sens.2020,12, 663.

附件【2020-Remote Sensing-Jiangchunhua-Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations.pdf已下载
关闭窗口
 
 

山东大学空间科学研究院卫星导航与遥感研究中心  

地址:山东省威海市文化西路180号    邮编:264209

当前访问量: