Author:Min Li , Tianhe Xu , Yali Shi Kai Wei , Xianming Fei , Dixing Wang
来源出版物:remote sensing 文献号:https://doi.org/10.3390/rs14092273 出版年:May 2022
Abstract:Real-time precise orbit determination (POD) of low earth orbiters (LEOs) is crucial for orbit maintenance as well as autonomous operation for space missions. The Global Positioning System (GPS) has become the dominant technique for real-time precise orbit determination (POD) of LEOs. However, the observation conditions of near-earth space are more critical than those on the ground. Real-time POD accuracy can be seriously affected when the observation environment suffers from strong space events, i.e., a heavy solar storm. In this study, we proposed a reliable adaptive Kalman filter based on pseudorange and epoch-differenced carrier-phase measurements. This approach uses the epoch-differenced carrier phase to eliminate the ambiguities and thus reduces the significant number of unknown parameters. Real calculations demonstrate that four to five observed GPS satellites is sufficient to solve reliable position parameters. Furthermore, with accurate pseudorange and epoch-differenced carrier-phase-based reference orbits, orbital dynamic disturbance can be detected precisely and reliably with an adaptive Kalman filter. Analyses of Swarm-A POD show that sub-meter level real-time orbit solutions can be obtained when the observation conditions are good. For poor observation conditions such as the GRACE-A satellite on 8 September 2017, when fewer than five GPS satellites were observed for 14% of the observation time, 1–2 m orbital accuracy can still be achieved with the proposed approach.
Keywords:real-time; low earth orbiters; adaptive Kalman filter; epoch-differenced carrier-phase
Citations:: Li, M.; Xu, T.; Shi, Y.; Wei,K.; Fei, X.; Wang, D. Adaptive Kalman Filter for Real-Time Precise Orbit Determination of Low Earth Orbit Satellites Based on Pseudorange and Epoch-Differenced Carrier-Phase Measurements. Remote Sens. 2022, 14, 2273.