author:徐天河,李 耸,王帅民,江 楠
1.山东大学空间科学研究院,山东威海 ;
2.河北工程大学矿业与测绘学院,河北邯郸;
来源出版物:测绘学报 第51卷第8期 文献号:DOI:10.11947/j.AGCS.200.20210480.出版年:Aug 2022
abstract:SingleGlevelmeteorologicalproducts (ERA5singleGleveldataand measured meteorological parameters)andmultiGlevelmeteorologicalproducts (ERA5pressureleveldataandCOSMICdata)are usedtoestimatetheZTD of 236 CMONOCstations,namelyERA5S_ZTD,MET_ZTD,ERA5P_ZTDandRO_ZTD,basedonthe modelmethodandtheintegration methodrespectively.FourZTDestimationsare evaluatedwiththereferenceofGNSS_ZTD;theresultsshowthattheaveragemonthlyRMSEare42.8,53.6,16.1and62.3mm,respectively.TheaccuracyofERA5P_ZTDestimatedbytheintegralmethodisthe highest,thatofERA5S_ZTDandMET_ZTDcalculatedbythemodelmethodarethenext.EstimatingRO_ZTDwiththeintegralmethodhasthelowestaccuracy.InordertofurtherimprovetheaccuracyofZTD estimations,improvedmodeloftroposphericdelayisproposedwiththeRBFneuralnetworkinthispaper.Thecalculationresultsshowthat:theaveragemonthlyRMSEbetweentheZTDfromfourimprovedmodels andGNSS_ZTDare23.5,32.1,14.2and40.8mm,whicharereduced43.4%,36.3%,10.0%and34.4%than rawZTDestimations.Theoverallmodifiedeffectoftheimprovedmodelisobvious,andtheimprovement rateisrelatedtothedensityofstationdistribution.
keywords:GNSS;RBFneuralnetwork;ERA5;COSMIC;troposphericdelay
citation:徐天河,李耸,王帅民,等.顾及气象数据的中国区域对流层延迟 RBF 神经网络优化模型[J].测绘学报,2022,51(8):1690G
1707.DOI:10.11947/j.AGCS.2022.20210480.
XU Tianhe,LISong,WANGShuaimin,etal.ImprovedtroposphericdelaymodelforChinausingRBFneuralnetworkand meteorologicaldata[J].Acta Geodaeticaet Cartographica Sinica,2022,51(8):1690G1707.DOI:10.11947/j.AGCS.200.20210480.